24 research outputs found

    Merging Belief Propagation and the Mean Field Approximation: A Free Energy Approach

    Get PDF
    We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al. We show that the message passing fixed-point equations obtained with this combination correspond to stationary points of a constrained region-based free energy approximation. Moreover, we present a convergent implementation of these message passing fixedpoint equations provided that the underlying factor graph fulfills certain technical conditions. In addition, we show how to include hard constraints in the part of the factor graph corresponding to belief propagation. Finally, we demonstrate an application of our method to iterative channel estimation and decoding in an orthogonal frequency division multiplexing (OFDM) system

    Assessment of atomic layer deposited TiO2 photocatalytic self-cleaning by quartz crystal microbalance

    Full text link
    The self-cleaning properties emerging from photocatalytic effects consist in the elimination of an organic contamination layer by light-induced redox reactions. Quartz crystal microbalances (QCMs), monitoring the contaminant mass loss under UV illumination, were used to investigate this effect and its efficiency. A new setup dedicated to such purpose is introduced along with the results of a self-cleaning experiment performed with a 20-nm TiO2 thin film coated on a QCM by atomic layer deposition. In particular, a 10-nm paraffin oil thin film deposited under vacuum is shown to be degraded down to its complete removal according to a zeroth order photocatalytic reaction. Finally, the experimental opportunities offered by the new setup, such as a controlled environment composition, are presented.Peer reviewe

    D11.2 Consolidated results on the performance limits of wireless communications

    Get PDF
    Deliverable D11.2 del projecte europeu NEWCOM#The report presents the Intermediate Results of N# JRAs on Performance Limits of Wireless Communications and highlights the fundamental issues that have been investigated by the WP1.1. The report illustrates the Joint Research Activities (JRAs) already identified during the first year of the project which are currently ongoing. For each activity there is a description, an illustration of the adherence and relevance with the identified fundamental open issues, a short presentation of the preliminary results, and a roadmap for the joint research work in the next year. Appendices for each JRA give technical details on the scientific activity in each JRA.Peer ReviewedPreprin

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Large-System Estimation Performance in Noisy Compressed Sensing with Random Support - a Bayesian Analysis

    No full text
    International audienceCompressed sensing (CS) enables measurement reconstruction by using sampling rates below the Nyquist rate, as long as the amplitude vector of interest is sparse. In this work, we first derive and analyze the Bayesian Cramér-Rao Bound (BCRB) for the amplitude vector when the set of indices (the support) of its non-zero entries is known. We consider the following context: (i) The dictionary is non-stochastic but randomly generated; (ii) the number of measurements and the support cardinality grow to infinity in a controlled manner, i.e. the ratio of these quantities converges to a constant; (iii) the support is random; and (iv) the vector of non-zero amplitudes follow a multidimensional generalized normal distribution. Using results from random matrix theory, we obtain closed-form approximations of the BCRB. These approximations can be formulated in a very compact form in low and high SNR regimes. Secondly, we provide a statistical analysis of the variance and the statistical efficiency of the oracle linear mean-square-error (LMMSE) estimator. Finally, we present results from numerical investigations in the context of non-bandlimited finite-rate-of-innovation (FRI) signal sampling. We show that the performance of Bayesian mean square error (BMSE) estimators that are aware of the cardinality of the support, such as OMP and CoSaMP, are in good agreement with the developed lower bounds in the high SNR regime. Conversely, sparse estimators exploiting only the knowledge of the parameter vector and the noise variance in form of a-priori distributions of these parameters, like LASSO and BPDN, are not efficient at high SNR. However, at low SNR their BMSE is lower than that of the former estimators and may be close to the BCRB

    Effects of O2 and H2O on TiO2 photocatalytic mass loss self-cleaning efficiency for thin hydrocarbons layers

    Full text link
    peer reviewedThe self-cleaning properties provided by photocatalytic reactions have raised a lot of interest for many applications. Nowadays, the widespread analysis methods to study photocatalytic self-cleaning comprise mainly indirect methods such as UV–VIS spectroscopy, chromatography or contact angles measurements. Quartz Crystal Microbalance is another appropriate way to study how the surface is decontaminated because it has the advantage to directly measure the reactant mass. In this study the latter was used to investigate various parameters such as mass loss kinetics, effect of photocatalyst or contaminant effective thicknesses, illumination flux … A special attention was paid to the effects of humidity and O2 on the photocatalytic removal of nanometric paraffin oil (hydrocarbons) films over TiO2. QCM measurements were carried out for several H2O and O2 relative contents in the exposure. Ultimately, water is not essential but acts as a reaction promoter while O2 tends to be essential without significantly affecting the photocatalytic rate provided it is present in sufficient amount. Considering these observations and potential degradation pathways of paraffin oil hydrocarbons, the role of H2O and O2 is discussed

    D11.2 Consolidated results on the performance limits of wireless communications

    No full text
    Deliverable D11.2 del projecte europeu NEWCOM#The report presents the Intermediate Results of N# JRAs on Performance Limits of Wireless Communications and highlights the fundamental issues that have been investigated by the WP1.1. The report illustrates the Joint Research Activities (JRAs) already identified during the first year of the project which are currently ongoing. For each activity there is a description, an illustration of the adherence and relevance with the identified fundamental open issues, a short presentation of the preliminary results, and a roadmap for the joint research work in the next year. Appendices for each JRA give technical details on the scientific activity in each JRA.Peer Reviewe
    corecore